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M. Horita and R. K. Zeigler

ABSTRACT

- By assuming that the failures of an artificial heart
system with a mean life of 10 years can be modeled by a
particular probability distribution, both the probability
of a failure in the system within t years and the reli-
ability required of each subsystem and component are

39338 00371 5413

investigated.

1. INTRODUCTION

The objective of the Nuclear-Powered
Artificial Heart Prototype System Develop-
ment Program being conducted by the Divi-
sion of Biomedical Environmental Research
(DBER) of the Energy Research and Devel-
opment Administration (ERDA) is to develop
a fully implantable nuclear-powered arti-
ficial heart with a mean life (life ex-
investi-

pectancy) of 10 yr. This report

gates the reliability of such an artificial

heart system. Here, reliability is defined

as the probability that a device will per-
form adequately for a specified period
after implantation. It also indicates
the implications of various assumptions
about subsystem or component reliability
and the requirements that may be imposed
on component structure in light of DBER's
objectives.

For simplicity, the heart is treated
first as a single basic unit, By assum-
ing that the artificial heart system fail-
ures can be modeled by a particular prob-
ability distribution, the probability of
a failure in the system within 1, 2, ...,

15 yr is calculated. In particular, the
exponential, normal, lognormal, gamma,
and Weibull distributions are considered.
In reality, however, the artificial
heart 1s composed of 4 subsystems with
s3, 37,
Using the probability distributions men-

5, and 4 components, respectively.1

tioned previously and further assuming
that the heart is a simple series system
each of whose subsystems and components
has the same failure distribution, the
mean life required of each subsystem and,
subsequently, of each component is cal-
culated. In this calculation, however,

it is necessary to alter DBER's objective
of developing a heart with a mean life of
10 yr by considering a heart with a median
life of 10 yr instead. (Discussion of this
topic begins on page 10.) Given results
whose distribution is unknown, the addi-
tional constraint of setting equal to 0.5
the probability that the system's time to
failure will be less than or equal to 10
yr, i.e., P(T < 10) = 0.5, makes 10 yr the
median of the distribution by definition.




Finally, two other approaches to this
problem are considered. If each heart sys-
tem component is assumed to have the same
failure distribution, the median life re-
quired of each subsystem with ki components
can be calculated. Further, if each sub-
system is assumed to have the same failure
distribution, in particular, the same med-
ian life, the mean life required of each
component of a particular subsystem also
can be calculated. These results are
tabulated for closer inspection.

This report does not give any final
answers about the reliability and mean
or median life requirements of the comp-
onents of a complex artificial heart sys-
tem like the prototype that DBER is devel-
oping. It does indicate some possible ap-
proaches and their consequences by simpli-
fying the problem through easing consider-

ations and calculations.

2. THE HEART AS A SINGLE BASIC SYSTEM
2.1. The Exponential Failure Distribution

The exponential distribution is chosen
as the failure distribution if it can be
assumed that the failure rate function is
constant, say A This assumption implies
a lack-of-memory property or no ''aging'"
effect.

Let T be a random variable that rep-
The ex-
ponential probability density function,
pdf, is

resents system time to failure.

% e't/x, t >0
f(t) =

0 selsewhere,
where t denotes time. The mean, E(T), is
A which when set equal to 10 yr, the mean
life of the heart system, implies that the
Z - 100. The stand-
ard deviation or positive square root of
the variance is SD(T) = 10.
the probability of a failure in the system

variance is V{(T) = A

To calculate

within t years, use

t

P(T<t) = Lo X/ gx w1 - e—t/k,

A

where P(T < t) often is denoted by F(t),
the (cumulative) distribution function or
cdf. Figures 1-3 are graphs of the expo-
nential pdf, cdf, and failure rate func-
tion, respectively.

The probabilities of A = 10 and
t=1, 2, ..., 15 are summarized to four
decimal places in Table I (at the end of
Note that when t = 7 yr,
the probability of a failure in the sys-
tem is 0.5034 and when t = 10 yr, the pro-
bability is 0.6321. For the probability
of a failure within 10 yr to be about 0.5,

this report).

a mean life of 14.4 yr is required.
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Fig. 1. The exponential probability density

function with A = 10.

2.2. The Normal Failure Distribution

If the system is subject to aging or
gradual failure of its electrical or mechan-
ical components, a normal distribution may
be useful in characterizing the failure
distribution.
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Fig. 2. The exponential cumulative distri-
bution function with A = 10.
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Fig. 3. The exponential failure rate func-

tion with A = 10.

The normal pdf is

2
£(t) = —2— exp |- Lt2H)” T @<t <w,
V21 o 20°

where yu, cz, and o are the mean, variance,
and standard deviation, respectively. If
a change of variable, z = (t-p)/o, is used,
the probability of a failure in the system

within t years is given by

The probabilities for this standardized
normal distribution with mean zero and vari-
ance one (standard deviation one) are con-
veniently tabulated and available in most
statistics texts.2 As two parameters, u
and o, are involved, set p = 10 and select
various and arbitrary values of ¢ to in-
vestigate the quantity P(T < t). Tables
IT-VI exhibit the calculations for u = 10
and ¢ = 1, 3, 5, 7, and 10, respectively.
The normal pdf, cdf, and failure rate func-
tion for these five sets of parameter val-
ues are shown in Figs. 4-6.

f(e) .2

The normal probability density
function with E(T) = 10 and
sp(T) =1, 3, 5, 7, and 10.
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Fig. 5. The normal cumulative distribution
function with E(T) = 10 and
SD(T) = 1, 3, 5, 7, and 10.
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Fig. 6. The normal failure rate function

with E(T) = 10 and SD(T) = 1, 3,
5, 7, and 10.

2.3. The Lognormal Failure Distribution

If X = loge T is normally distributed,
T is said to have a lognormal distribution.
This distribution has been used to describe
the distribution of nuclear reactor fail-
ure rates. The pdf, mean, and variance

are

—— exp[- (log,(t)-0’/ 2o%) ],t>0
tvV/2nag

f(t) =

0 , e€elsewhere |,

2
E(T) = Mo /2,

and
V(T) = e?¥ KE (e°2-1)
For E(T) = 10 and V(T) = 1, say,
u=EX) = log, 10 - 02/2
and
of = V(X) = log (1.01) ~ 0.01

The standard deviation is SD(X) ~ 0.10. By
substitution, u = log, 10 - 0.01/2 ~ 2.30.
These u and 02 values can then be used in
calculating the probability of a failure

in the system within t years, where

1oget-u
P(T<t) = P(X< 1oget) = PlZ < —

2
e 2 /2 dz

3
3

which is tabulated as previously mentioned.
When other values for the standard de-
viation of T are assigned and calculations
similar to those shown above are performed,
E(T) = 10 and SD(T) = 3 imply that u ~2.26
and o = 0.29; E(T) = 10 and SD(T) = 5 imply




that ¢ ~ 2.19 and o = 0.47; E(T) = 10 and
SD(T) = 7 imply that u ~ 2.10 and ¢ = 0.63;
and E(T) = 10 and SD(T) = 10 imply that
B~ 1.96 and ¢ = 0.83.
in Tables II-VI.

The lognormal pdf, cdf, and failure

Results are shown

rate function for the five cases considered

above are shown in Figs. 7-9.
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Fig. 7. The lognormal probability density
function with E(T) = 10 and
SD(T) =1, 3, 5, 7, and 10.
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F(t)

Fig. 8. The lognormal cumulative distribu-
tion function with E(T) = 10 and

sp(t) =1, 3, 5, 7, and 10.
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SO(T) =3

Fig. 9. The lognormal failure rate function
with E(T) = 10 and SD(T) = 1, 3,

5, 7, and 10.

2.4. The Gamma Failure Distribution

The gamma distribution may be useful in
characterizing failures if the components in
a complex electromechanical system fail
instantaneously during the initial (burn-in)
stage or the wear-out period of operation.

The gamma pdf, mean, and variance are

1 ta‘l e't/B, 0<t<omo

T (a)B®
f(t)=
0 ,elsewhere,
E(T) = aB,
and
2
V(T) = aB”,

where o is the shape parameter and B8 is the
scale parameter. Note that when o = 1, the
gamma pdf reduces to the exponential pdf.
By graphical depiction, the failure inten-
sity rate increases for a > 1 and decreases
for a < 1.

The chi-square distribution is a
special case of the gamma distribution with
a = v/2 and 8 = 2 where v is a positive
integer representing the degrees of freedom.




If T has a gamma distribution with param-
eters o and B, then there exists an X such
that T = %L where the random variable X
has a chi-square distribution with v = 2a
degrees of freedom. Thus, the probability
of a failure within t years can be ex-

pressed as
P(T<t) = P(X<2t/B8).

To calculate that probability, three
approximations may be used.® The first
approximatior standardizes the random vari-
able X, that is, subtracts its mean, v,
and divides by its standard deviation, v2v .
As v+o, the standardized chi-square dis-
tribution approaches the standardized nor-

mal distribution. Thus,

P(X < 2t/8)~ @ [cz—g - ) (2v) '1/2]
- Q[(z—; - 20) (2(2a)) '1/2]
= E-a
P & . (1)
Vo

The second approximation is known as
Fisher's approximation, and the third is the
Wilson-Hilferty approximation. Both use

approximate standardization and are given

as
P(X < 2t/8)~ [/2(2:/8) - V2(2a) = 1 ]

-0 (Wm) ()
P(X < 2t/8)~ {[(ETégT ) 13 -1

+ %(Za)_l} 9(?)}

1/3 1
) _1"‘9—' ] 3/a }.
o

(3)

er‘f
W

-

Of these three approximations, the first is
the least accurate and the third is the
most accurate, unless 20 is large, in which
case, the difference in accuracy among them
is small.

Again, through the arbitrary and con-
sistent assignment of SD(T) = 1, 3, 5, 7,
and 10, calculations for these five cases
using the Wilson-Hilferty approximation are
shown in Tables II-VI, respectively. Set-
ting E(T) = 10 and SD(T) = 1 gives a = 100
and 8 = 0.10. Similarly, for E(T) = 10
and SD(T) = 3, a ~ 11.11 and 8 = 0.90;
for E(T) = 10 and SD(T) = 5, o = 4 and
B = 2.50; for E(T) = 10 and SD(T) = 7,

o ~ 2.04 and B = 4.90; and for E(T) = 10
and SD(T) = 10, a = 1 and B = 10.

Figures 10-12 show the gamma pdf, cdf,

and failure rate function.
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Fig. 10. The gamma probability density

function with E(T) = 10 and
sp(t) =1, 3, 5, 7, and 10.
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2.5.

SD(M) = 1

11. The gamma cumulative distribution
function with E(T) =
Sp(T) = 1, 3, 5, 7,

10 and
and 10.

12. The gamma failure rate function
with E(T) = 10 and SD(T) = 1, 3,
5, 7, and 10.

The Weibull Failure Distribution

ful i
opera
ing o
elect
phase
compo
the s

The Weibull distribution has been use-
n accelerated testing of components
ting under forced conditions, test-

f equipment such as ball bearings and
ron tubes during the initial-failure

, and in a system involving several
nents whose failure is attributed to

everest flaw.

The Weibull pdf is

Y
%tY'l exp(— %), t>0

f(t)=

0

, elsewhere,

where vy is the shape parameter and B8 is the
When vy = 1, the Weibull
pdf becomes the exponential pdf.

scale parameter.
An expo-
nential-type graph which can be used to
characterize a decreasing failure intensity
rate results when vy < 1. Also, Weibull
pdf's with v < 1 are useful in describ-

ing catastrophic failures. When vy > 1,

the graph of the Weibull pdf is unimodal.
In a more general case, wear-out failures
and increasing failure intensity rates are
best characterized using v > 1 and

t >a > 0. The mean and variance of the
Weibull distribution are given by

g(m) = 8t/ Yra+ 1/v),

vty = 8%/Y[ra1 + 2/v) - TP+ /1.

To calculate the probability of a fail-
ure within t years, the values of ¥y and 8

must be determined. For E(T) = 10 and
v(T) = 1, say,
g2l - . 100 ,
re( + 1/v)
and
T > 2/x) = ;.01
r“(1 + 1/v)

In a trial and error process, Y ~ 12.15
and B8 . 2.38 x 1012 are a solution to the
above equations. In similar calculations,
E(T) = 10 and SD(T) = 3 give vy ~ 3.71 and

B ~ 7.57 x 10%; E(T) = 10 and SD(T) = 5
give y ~ 2.10 and 8 ~ 1.63 x 10%; E(T) = 10
and SD(T) = 7 give Y ~ 1.45 and B ~ 32.59;
and E(T) = 10 and SD(T) = 10 give v ~ 1.00

and B ~ 10. Note the large B values that
result. Such parameter values seem very
unrealistic.



Figures 13-15 are graphs of the Weibull
pdf, cdf, and failure rate function for each
of the five cases.

£(t)
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Fig. 13. The Weibull probability density
function with E(T) = 10 and
SD(T) =1, 3, 5, 7, and 10.
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Fig. 14. The Weibull cumulative distribu-

tion function with E(T) = 10 and
sp(T) =1, 3, 5, 7, and 10.
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Fig. 15. The Weibull failure rate function

with E(T) = 10 and SD(T) = 1, 3,
5, 7, and 10.

The probability of a failure within t
years is given by

t

v/8 xY 1 exp(- xY/8) dx

P(T < t)

0
1 - exp(-tY/8)

The results are shown in Tables II-VI.
2.6. Summary: The Probability of a Failure

in the Heart System

For the exponential distribution, the
probability of a failure in the heart system
is high during the initial years, reaches
0.5 before the seventh year instead of the
tenth year, and does not exceed 0.8 even
during the fifteenth year.

The results for the other distributions
considered (see Tables II-VI) show similar
probabilities within tables. In a compari-
son among tables, the probabilities of a
failure during the first 10 years generally
increase as the standard deviations in-
crease, then after the tenth year the pro-
babilities generally decrease as the stan-

dard deviations increase.




3. A HEART COMPOSED OF 4 SUBSYSTEMS AND

99 COMPONENTS

The four subsystems of the artificial
heart are a thermal converter, a blood
pump, a flexible shaft assembly, and a cool-
It will be assumed that they
that is,
of any one subsystem implies failure of

ing system.1
are connected in series; failure
the entire heart system, where each sub-
system operates independently of the others
(Appendix A).

3.1. The Exponential Failure Distribution

First, consider the case in which each
subsystem has an exponential failure distri-
The probability
of a failure in the system within t years

bution with parameter A.

is
P (TS <t)
= P (at least one subsystem fails before
time t)
=1 - P(Ssl> t, 88,> t, §5.> t, §S,> t)
=1 - P(§8;> t) P(§S,> t) P(SS5> t)
P(SS4 >t)
4
=1 (e—t/x) =1 - & 4t/A ,

where S refers to system and SS refers to
subsystem n. The result is an exponential
distribution with parameter A/4. The mean
and variance of the random variable T for

the system are

E(Tg) = A/4 = 10=> A= 40,
and
V(TS) = 1600
Thus, if each subsystem has a mean life of

40 yr and a variance of 1600 yr (or a
standard deviation of 40 yr), the heart
system will have a mean life of 10 yr and
a variance of 100 yr (or a standard devia-
tion of 10 yr). From a practical standpoint,
such large variances are undesirable. More-

over, a mean life of 40 yr is not realistic.

To go one step further, assume that
the four subsystems have kl’ k2, kS’ and k4
components, respectively. Each component has
an exponential failure distribution with
parameter A and each operates independently.
In reality, several different failure dis-
tributions may be represented within a sub-
system and failure of a single component
may not imply failure of the subsystem and,
subsequently, of the entire heart system as
the series connection suggests. Neverthe-
less, for simplicity of calculation and
illustration, these assumptions are made.

The probability of a failure in the

heart is now given as

P (Tg< t)

P (at least one subsystem fails before

time t)
=1 - P(SSl> t, SSZ> t, SSS> t, SSd> t)
=1 - P(Ssl> t) P(SS,> t) P(SSS> t)
’ P(SS,> t)
=1 - P(C11 >t, . Clkl >t)
P(C21 STy s CZkz >t)
P(Czy >t, ..us C3k3 >t)
P(C41 b2 A C4k4 >t)
=1 - P(C11 > t)...P(Clk1 > t)
P(C21 > t)...P(C2k2 > t)
P(Cqy > t)...P(CSkS > t)
P(Cyy > t)...P(C4k4 > t)
S 1 (et kl+k?+k3+k4
S e—(k1+k2+k3+k4)t/x ,
where Cij refers to component j, j =1, ...,

ki’ in the ith subsystem. The result is

an exponential distribution with parameter
A
& + k, + kg + KZ)'

Thus, each component



should have a mean life of (kl + k2 + k3 +
k4) x 10 yr for the heart to have a mean
life of 10 yr.

in the artificial heart, the requirement is

As there are 99 components

an incredible mean life of 990 yr each.

Of those 99 components, 53 are in the
first subsystem, 37 in the second, 5 in
the third, and 4 in the fourth. If it is
assumed that each component has the same
exponential distribution, the mean life

required of each subsystem with ki compo-

nents is
4
10 3k,
. i
i=1
IEi
years. That is,

P (T <t

= P (at least one component in subsystem i
fails before time t)

=1 - P(Ci1>t, cees Ciki>t)

=1 - P(Cil >t), cees P<Ciki >t>

=1 - exp [—t/(lo_iki) k;

1=1
4
=1 - exp|-k;t/ (10 2 k. .
i=1 1
This is an exponential distribution with

4
102: ki
i=1 )
parameter ki Thus, for the
heart to have a mean life of 10 yr, each
subsystem should have a mean life of
18.68, 26.76, 198.00, and 247.50 yr, re-
(The life values of sub-

systems and components are rounded to two

spectively.

decimal places throughout this report.)
The latter values, especially, are proba-
bly impossible to achieve in practice.

3.2. The Normal Failure Distribution

When each subsystem has a normal

10

failure distribution with parameters u
and 02, the probability of a failure in
the system within t years 1is

@ 4
2
1 -2°/2
P(Tg<t)=1- —— e dz .
S— ,[u Y2m
o

In determining the mean life required of
each subsystem given 10-yr mean life of
the heart, there is the problem that the
above result is not normally distributed.
In an attempt to solve the problem, addi-
tional constraints are imposed and a trial
and error process is used. Given pre-
assigned values for the standard deviation
of TSS’ where the subscript SS refers to
subsystem, the following values for the
mean of TSS’ u = E(TSS), give P(TS < 10) =
0.5. Note that, by definition, the value
of t such that P(T < t) < 0.5 and P(T < t) >
0.5 is called the median of the distribu-
tion of the random variable T. Hence, in
satisfying the assumption that P(TS <10) =
0.5, DBER's objective of developing an
artificial heart with a mean 1ife of 10 yr
changes to that of developing a heart with
a median life of 10 yr (Appendix B). Nota-
tionally, ty denotes the median.

For 6 = SD(Tgg) = 1, u = E(Tgg) = 11.00;
12.99; for o = 5, u = 14.99;
16.99; and for o = 10,

for o = 3,

U
for o =7, u
u = 19.98.
If the four subsystems have 99 compo-
nents and all the components have the same
normal failure distribution, a comparable
trial and error process involving preassigned
standard deviation values is used to de-
termine the mean life values of the compo-
nents indirectly. Again, it is assumed
that the median life of the heart is 10 yr.
The probability of a failure in the heart
within t years, given its composition of
99 components, is

e o] 99

—é: exp(-zz/Z)dz

/2T
t-u
o

P(Tg<t) =1-




For t = 10 and o = SD(TC) =1, 3, 5, 7,
and 10 where the subscript c¢ indicates com-
ponents, this equation is set equal to 0.5
and solved for u. For these five cases, the
results show that each of the 99 components
should have a mean life, u, of 12.46, 17.38,
22.29, 27.21, and 34.58 yr, respectively.
The median life required of each sub-
system with ki components each of which has
the same normal distribution is calculated
using

@ k

P(Tgg <t)=1- L exp(-zZ/Z)dz .
i~ V2T

t-u
o

For subsystem I, for example, solve for t
“using

P(T <t
fso, <

© 53

L1 exp(-z%/2)dz = 0.5 .
2w
t-u
o
If each component has a mean life, u, of
12.46 yr and a standard deviation, o, of

1yr, P (Tssl < 10.23)= 0.5. That is,

subsystem I has a median life of 10.23 yr.
Results of using the other previously
given values for the mean and standard de-
viation of the components of each of the
four subsystems are shown in Table VII.

Still another approach may be taken.
If each subsystem is required to have the
same normal distribution, specifically, the
same median life, then the mean life of _
each component in a particular subsystem
can be calculated using

P <Tss. < t>
1

® ky
1 2
=1 —— exp(-2~/2)dz = 0.5
f =
-

[¢)

To illustrate, for subsystem I, setting
g = SD(TC) = 1 and using the previously

calculated value E(TSS) = 11.00 = t gives

P<Tssl < 11.oo>

fe o) 52
=1 - = exp(-zz/Z)dz
T
11.00-u
= 0.5

Trial and error give u = E(TC) = 13.23.
Similar calculations for other values

of SD(TC) and E(TSS) for each of the four
subsystems are summarized in Table VIIT.

3.3 The Lognormal Failure Distribution

If each subsystem has a lognormal
failure distribution with parameters u and
02, the probability of a failure in the

heart within t years is

P(Tsit)
4
@
=1 - L exp(-zZ/Z)dz .
A
1oge t-u
c

Again, through trial and error, w and o
are selected so that the median life of
’ SD(TSS)
1, the mean life required of each sub-
system, u = E(TSS), is 11.10 yr. If

the system is 10 yr. For o = =

XSS = 1oge TSS is normally distributed,

E(XSS) ~ 2.40 and SD(XSS) ~ 0.1. For

SD(TSS) =3, E(TSS) = 14.00, E(XSS) ~ 2.60,

11



and SD(XSS) ~ 0.29; for SD(TSS) = 5, E(TSS)=
17.92, E(XSS) ~ 2.77, and SD(XSS) ~ 0.47.
Similarly, for SD(TSS) = 7, E(TSS) = 22.93,
E(XSS) ~ 2.93, and SD(XSS) ~ 0.63; for
SD(Tgg) = 10, E(Tgg) = 32.47, E(Xgg) ~

3.13, and SD(XSS) ~ 0.83.

For the heart with 99 components each
having the same lognormal distribution, the
probability of a failure in the system with-
in t years is

(<9

99
0

1 exp(-zz/z)dz .
T
log, t-u

Given t = 10, P(TS < 10) = 0.5, and
o = SD(TC) =1, 3, 5, 7, and 10, each of
the 99 components should have a mean life,
u, of 12.84, 21.49, 35.71, 57.65, and
109.50 yr, respectively, for the system
to have a median life of 10 yr. If
Xc = loge TC is normally distributed,
E(Xc) ~ 2.55, 3.02, 3.46, 3.86, and 4.35
for the five cases, and SD(XC) ~ 0.10,
0.29, 0.47, 0.63, and 0.83.

In considering the distribution of the
components among the four subsystems, use

P(T <t

1 exp(-zz/Z)dz' ,
2w

loge t-u
where each component is assumed to have the

With this
equation set equal to 0.5, the median life

same lognormal distribution.

required of each subsystem is obtained by
solving for t using the values of p = E(TC)
and ¢ = SD(TC) calculated in the previous

paragraph. Results are shown in Table IX.
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If each subsystem has the same log-
normal distribution (the same median life),
the mean life required of each component
within a particular subsystem is obtained
by solving for u using the previously cal-
culated values for ¢ and t in R

P(Tee < t

© k.
i
=1 - . exp(-zz/Z)dz
J2m
1oge t-u
a
= 0.5

These calculations are given in Table X.
3.4. The Gamma Failure Distribution

When each subsystem has a gamma fail-
ure distribution with parameters o and 8,
the probability of a failure in the system
within t years is

P{T. <t
(s <)
i ¢\ 1/3
=1-{1-08|(5 -1
4
+ §é 3o s

again by use of the Wilson-Hilferty ap-
proximation. The result is not a gamma
distribution. Trial and error are used to
find the mean life required of each sub-
system if the median life of the system

is to be 10 yr. For P(TS < 10) = 0.5,
SD(TSS) = 1, say, implies that E(TSS) =
11.00, a ~ 120.93, and B ~ 0.09. Likewise,
SD(TSS) = 3 gives E(TSS) = 12.97, o ~18.68,
and B ~ 0.69; SD(TSS) = 5 gives E(TSS) =
14.89, o ~ 8.87, and 8 ~ 1.68; SD(Tgg) =

7 gives E(TSS) = 16.77, @« ~ 5.74, and

B ~ 2.92; and SD(TSS) = 10 gives E(TSS) =
19.51, « ~ 3.81, and B ~ 5.13.




Given the 99 components edch of which
has the same gamma distribution, the pro-
bability of a failure in the heart within

t years 1is
‘)
RO

99
+ —l~] 3va %
9a

For t = 10, P(Tsi 10) = 0.5 and SD(TC] =1,
3, 5, 7, and 10, the mean life required of
each component is 12.32, 16.46, 20.23,
23.78, and 28.84 yr, respectively. 1In

I A

p (Ts

LI}
—
1

these five cases, the a values are
o ~ 151.83, 30.10, 16.37, 11.54, and 8.32
and the B values are B -~0.08, 0.55, 1.24,
2.06, and 3.47.

To calculate the median 1life required
of each subsystem with ki components, set

p (T < t)
ss; <

and solve for t using the o and B values
obtained for E(TC) and SD(TC) in the pre-
vious paragraph. These results are shown
in Table XI.

If each subsystem has the same gamma
distribution (the same median 1life), solv-

ing

for a8 = E(TC] using the previously calcu-
lated values of t gives the mean life re-
quired of each component within a subsystem.
These results, as well as the values for
SD(TC), o, and B, are given in Table XII.
3.5. The Weibull Failure Distribution

If each subsystem has a Weibull fail-

ure distribution with parameters y and B,
the probability of a failure in the system
within t years is

tY *
P(TS <t) =1-exp|{- B ,

which is a Weibull distribution with param-
eters v and 8/4. Assuming that the mean
life of the heart system is 10 yr and the
standard deviation is 1 yr, if v ~ 12.92
and 8 ~ 5.78 x 1013

standard deviation required of each sub-

, the mean life and

system are 11.16 and 1.05, respectively.
Similarly, for SD(TS) = 3, Y ~ 3.70 and
B - 2.89 x10% imply that E(Tgg) = 14.50
and SD(TSS) = 4.37. TFor SD(TS) =5,

Y -~ 2.10 and 8 ~ 6.48 x 102 imply that

E(Tgg) = 19.34 and SD(Tgg) = 9.68, and for
SD(Tg) = 7, Y ~ 1.45 and 8 ~ 1.30 x 10°
imply that E(TSS) = 25.99 and SD(TSS) =
18.19. 1f SD(TS) = 10, v ~ 1.00 and

B ~ 40.00 give E(TSS) = 40.00 and

SD(Tgg) = 40.00.

For a heart with 99 components, each
having the same Weibull distribution, the
probability of a failure within t years is

Y 99
P(TS < t) =1-exp|- E—_) ,

which is a Weibull distribution with param-
eters Yy and B/99.
and a standard deviation of 1, 3, S5, 7, and

A mean life of 10 yr

10 yr for the heart system were the con-
ditions placed on the following calculations.
For v ~ 12.05 and B ~ 1.84 x 1014, the mean
life and standard deviation of each compo-
nent are 14.64 yr and 1.48 yr, respectively.
For SD(Tgg) = 3, Y ~ 3.70 and 8 ~ 7.14 x 10°
imply that E(TC) = 34.54 and SD(TC) = 10.40.
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Similarly, for SD(TSS) =5, vy ~ 2.10,
8 ~ 1.60 x 10°, E(T.) = 89.20, and
SD(T.) = 44.65. For SD(Tgg) = 7, ¥ ~ 1.47,
B - 3.39 x 10%, E(T) = 231.98, and SD(T)
160.89. For SD(Tgg) = 10, ¥ - 1.01,
B ~ 1.02 x 10, E(T ) = 966.00, and SD(T_)
959.41.

For a subsystem with ki components

each of which has the same Weibull dis-
tribution, the probability of a failure in
the subsystem within t years is

N o\
P TSsi <t]=1-exp|- B ,

which is a Weibull distribution with param-
eters y and B/ki. Given the values for
E(TSS) and SD(TSS) obtained previously,

the mean life, standard deviation, o, and B8
values required of each component within a
subsystem, assuming an identical Weibull
failure distribution for each subsystem, are
as shown in Table XIII.

3.6. Summary: The Life Requirements of a

Subsystem with k Components

In comparing the mean life or median
life of a subsystem or component as calcula-
ted for the various probability distribu-
tions, it appears that stringent assump-
tions and requirements are sometimes needed.

The means and standard deviations of
the exponential and Weibull distributions
are extremely high. The results for the
other three distributions, in similar pre-
assigned standard deviation conditions,
show comparable mean life values for the
three subsystems. As for the mean life
values of the 99 components, the lowest
requirements came from using the gamma dis-
tribution, whereas the highest came from
using the Weibull distribution.

Assuming that each component of the
heart system has the same failure distribu-
tion gives median life values of each sub-
system with k components derived using a
normal distribution, a lognormal distri-
bution, and a gamma distribution which are

very similar to each other. Note that the

14

median life required of a subsystem with
fewer components is a few years longer

than that of a subsystem with more compo-
nents; i.e., the fewer the components, the
less likelihood of a failure in the system,
Just the
opposite is true if each subsystem is as-

so the longer the median life.

sumed to have the same failure distribution,
Then,
the fewer the components in the subsystenm,

in particular, the same median life.

the shorter the mean life required of each
component.

It is recommended that experimental
data obtained by testing the heart system
be used to suggest failure distributions
and parameter values of practical interest
in calculating the probability of a failure
within t years and the mean or median life
required of a particular subsystem or com-
ponent. Although these computations will
be more difficult, the results will be
more realistic.
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APPENDIX A
SYSTEM RELIABILITY

Because the heart is assumed to be a
simple series system of components,

Rg = Ry, Ry, «..y R,
where RS is the system reliability and Rn
is the reliability of the individual com-
ponents. Given the apportioned reliability
of the components as shown in Table 5.4 of
Ref. 1, the reliability of the system is

0.500636. Of the 99 heart components, 22

have a reliability of 0.999999, 70 have a
reliability of 0.999, and 7 have a relia-
bility of 0.915. 1If these 7 components
had a reliability of 0.999 instead of
0.915, the reliability of the system would
be 0.925834.
each component had a reliability of
0.9999, 0.99999, and 0.999999, respec-
tively, the corresponding system relia-
bilities would be 0.990148, 0.999010, and
0.999901.

To speculate further, if

APPENDIX B
THE MEAN VS THE MEDIAN

Two measures of a distribution's cen-
tral tendency are the mean and the median.
The mean is the long-term average of a ran-
dom variable, and the median is the point
below which 50% of the distribution lies.
Although the median is mathematically less
tractable, it is useful in descriptive
statistics because it represents the typi-
cal score. The mean, on the other hand,
is useful when making inferences beyond
the sample.2

If the distribution is symmetrical,

the mean and median are equal. If the

distribution is asymmetrical or skewed,
If a distri-
bution is skewed to the right, or posi-

they usually are unequal.

tively, the mean is usually larger than
the median. If a distribution is skewed
to the left, or negatively, the median is
usually larger than the mean.

Note that the mean is very sensitive
to changes in data scores at the extremes
of a distribution, whereas such changes
do not affect the median as long as the

rank order of the scores is preserved.
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TABLE I
THE PROBABILITY OF A FAILURE IN THE HEART SYSTEM FOR t YEARS
ASSUMING A MEAN LIFE OF 10 YEARS, A VARIANCE OF 100 YEARS,
AND THE EXPONENTIAL FAILURE DISTRIBUTION

Years Exponential
1 0.0952
2 0.1813
3 0.2592
4 0.3297
5 0.3935
6 0.4512
7 0.5034
8 0.5507
9 0.5934

10 0.6321

11 0.6671

12 0.6988

13 0.7275

14 0.7534

15 0.7769
TABLE II

THE PROBABILITY OF A FAILURE IN THE HEART SYSTEM FOR t YEARS
ASSUMING A MEAN LIFE OF 10 YEARS, A STANDARD DEVIATION OF
1 YEAR, AND VARIOUS FAILURE DISTRIBUTIONS

Years\Distribution Normal Lognormal Gamma Weibull
1 0.0000 0.0000 0.0000 0.0000
2 0.0000 0.0000 0.0000 0.0000
3 0.0000 0.0000 0.0000 0.0000
4 0.0000° 0.0000 0.0000 0.0000
) 0.0000 0.0000 0.0000 0.0001
6 0.0000 0.0000 0.0000 0.0012
7 0.0013 0.0002 0.0004 0.0078
8 0.0228 0.0144 0.0171 0.0390
9 0.1587 0.1571 0.1582 0.1534

10 0.5000 0.5199 0.5133 0.4508
11 0.8413 0.8426 0.8418 0.8517
12 0.9772 0.9698 0.9721 0.9959
13 0.9987 0.9963 0.9972 1.0000
14 1.0000 0.9997 0.9998 1.0000
15 1.0000 1.0000 1.0000 1.0000




THE PROBABILITY OF A FAILURE IN THE HEART SYSTEM FOR t YEARS
ASSUMING A MEAN LIFE OF 10 YEARS, A STANDARD DEVIATION OF

TABLE III

3 YEARS, AND VARIQUS FAILURE DISTRIBUTIONS

Years\Distribution

1

0 N N T B NN

11
12
13
14
15

THE PROBABILITY OF A FAILURE IN THE HEART SYSTEM FOR t YEARS
ASSUMING A MEAN LIFE OF 10 YEARS, A STANDARD DEVIATION OF

Normal

.0013
.0038

.0098
.0228
.0478
.0912
.1587
.2525
. 3694
.5000
.6306
.7475
0.8413
0.9088
0.9522

O O OO O 0o O O O o o

o

Lognormal
0.0000
0.0000

0.0000
0.0015
0.0134
0.0555
0.1427
0.2698
0.4160
0.5583
0.6813
0.7787
0.8509
0.9020
0.9367

TABLE IV

O OO0 O O O O O O O O o O oo

Gamma

.0000

.0007
.0057
.0248
.0714
.1536
.2687
.4032
.5398
.6638
.7663
.8447
.9009
.9391

5 YEARS, AND VARIOUS FAILURE DISTRIBUTIONS

Years\Distribution

© 00 NS U W N

N e
b W MO

Normal

0.0359
0.0548
0.0808
0.1151
0.1587
0.2119
0.2743
0.3446
0.4207
0.5000
0.57983
0.6554
0.7257
0.7881
0.8413

Lognormal

0.0000
0.0008
0.0104
0.0442
0.1091
0.1990
0.3019
0.4066
0.5052
0.5934
0.6693
0.7331
0.7857
0.8286
0.8631

Gamma

0.0012
0.0100
0.0346
0.0789
0.1421
0.2198
0.3065
0.3961
0.4839
0.5662
0.6407
0.7063
0.7627
0.8102
0.8497

L0000

Weibull

.0001
.0017

.0078
.0225
.0508
.0975
.1662
.2580
.3701
.4952
.6224
. 7396
.8365
.9079
.9541

O O 0O O O O OO O o O O © oo

Weibull

0.0061
0.0260
0.0599
0.1068
0.1652
0.2327
0.3066
0.3842
0.4626
0.5392
0.6120
0.6791
0.7394
0.7922
0.8374
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TABLE V

THE PROBABILITY OF A FAILURE IN THE HEART SYSTEM FOR t YEARS
ASSUMING A MEAN LIFE OF 10 YEARS, A STANDARD DEVIATION OF
7 YEARS, AND VARIOUS FAILURE DISTRIBUTIONS

Years\Distribution Normal Lognormal Gamma Weibull
1 0.0993 0.0004 0.0196 0.0302
2 0.1265 0.0128 0.0610 0.0805
3 0.1587 0.0558 0.1183 0.1403
4 0.1957 0.1281 0.1855 0.2050
5 0.2375 0.2171 0.2576 0.2718
6 0.2839 0.3109 0.3308 0.3385
7 0.3341 0.4017 0.4024 0.4036
8 0.3875 0.4850 0.47086 0.4660
9 0.4432 0.5592 0.5340 0.5250

10 0.5000 0.6239 0.5922 0.5799

11 0.5568 0.6796 0.6449 0.6307

12 0.6125 0.7272 0.6921 0.6770

13 0.6659 0.7677 0.7340 0.7190

14 0.7161 0.8019 0.7710 0.7567

15 0.7625 0.8309 0.8033 0.7903
TABLE VI

THE PROBABILITY OF A FAILURE IN THE HEART SYSTEM FOR t YEARS
ASSUMING A MEAN LIFE OF 10 YEARS, A STANDARD DEVIATION OF
10 YEARS, AND VARIOUS FAILURE DISTRIBUTIONS

Years\Distribution Normal Lognormal Gamma Weibull
1 0.1841 0.0094 0.1013 0.0952
2 0.2119 0.0647 0.1808 0.1813
3 0.2420 0.1515 0.2552 0.2592
4 0.2743 0.2469 0.3241 0.3297
S 0.3085 0.3386 0.3876 0.3935
6 0.3446 0.4218 0.4458 0.4512
7 0.3821 0.4952 0.4988 0.5034
8 0.4207 0.5589 0.5471 0.5507
9 0.4602 0.6140 0.5909 0.5934

10 0.5000 0.6614 0.6306 0.6321
11 0.5398 0.7022 0.6665 0.6671
12 0.5793 0.7374 0.6989 0.6988
13 0.6179 0.7677 0.7282 0.7275
14 0.6554 0.7940 0.7547 0.7534
15 0.6915 0.8168 0.7786 0.7769



TABLE VII

THE MEDIAN LIFE, Tty REQUIRED OF EACH SUBSYSTEM WITH ki COMPONENTS
ASSUMING AN IDENTICAL NORMAL FAILURE DISTRIBUTION FOR EACH COMPONENT

E(Tc) 12.46 17.38 22.29 27.21 34.58
10
Subsystem 1 3 5 7

SD(TC)

I t = 10.23 10.70 11.16 11.62 12.32

II 10.37 11.12 11.87 12.62 13.74

I1X i 11.33 13.99 16.65 19.31 23.29

IV 11.46 14.38 17.30 20.22 24.60

TABLE VIIIX

THE MEAN LIFE, p, REQUIRED OF EACH COMPONENT WITHIN A SUBSYSTEM
ASSUMING AN IDENTICAL NORMAL FAILURE DISTRIBUTION FOR EACH SUBSYSTEM

E(T..) 11.00 12,99 14.99 16.99 19.98
Subsystem S8
SD(T ) 1 3 5 7 10
c
I u = 13.23 19.67 26.12 32.57 42,25
IX 13.08 19.25 25.41 31.58 40.83
III 12,13 16.38 20.64 24.89 31.27
IV 12.00 15.99 19.98 23.97 29.96
TABLE IX

THE MEDIAN LIFE,tM, REQUIRED OF EACH SUBSYSTEM WITH ki COMPONENTS
ASSUMING AN IDENTICAL LOGNORMAL FAILURE DISTRIBUTION FOR EACH COMPONENT

E(CT ) 12.84 21.49 35,71 57.65 109.50
Subsystem ¢ 1 3 5
SD(T ) , 7 10
c

I t = 10.23 10.71 11.16 11.58 12,13
II 10.38 11.16 11,93 12.66 13.65
III 11.42 14.77 18.74 23.15 30.25
v 11.57 15.35 19.93 25.15 33.73
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TABLE X

THE MEAN LIFE, y, REQUIRED OF EACH COMPONENT WITHIN A SUBSYSTEM
ASSUMING AN IDENTICAL LOGNORMAL FAILURE DISTRIBUTION FOR EACH SUBSYSTEM

E(TSS) 11.10 14.00 17.92 22.93 32.47
Subsystem
SD(T.) 1 3 5 7 10
1 u = 13.86 26.90 51.28 93.53 207.22
II 13.67 25.81 47.96 85.51 184.12
I1I 12,43 19.49 30.54 46.77 83.11
v 12.26 18.76 28.71 43.06 74,53
TABLE XI

THE MEDIAN LIFE,tM, REQUIRED OF EACH SUBSYSTEM WITH ki COMPONENTS
ASSUMING AN IDENTICAL GAMMA FAILURE DISTRIBUTION FOR EACH COMPONENT

E(T,) 12.32 16.46 20.23 23,78 28,84
Subsystem\ ' sp(T.) 1 3 5 7 10
a 151.83 30.10 16.37 11.54 8.32
8 0.08 0.55 1.24 2.06 3.47
I t = 10.20 10.51 10.74 10.94 11.19
1I 10.32 10.83 11.22 11.54 11.96
111 11.20 13.14 14.76 16.19 18.10
v 11.33 13.48 15.29 16.90 19.08




TABLE XII

THE MEAN LIFE, STANDARD DEVIATION, o, AND B VALUES REQUIRED OF EACH COMPONENT
WITHIN A SUBSYSTEM ASSUMING AN IDENTICAL GAMMA FAILURE DISTRIBUTION

FOR EACH SUBSYSTEM

Subsystem\E(T 11.00

ss’
I E(Tc)= 13.12
SD(TC)~ 1.00
a ~172.19
B ~ 0.08

II 12.99
1.00

168.86

0.08

III 12.12
1.00

146.82

0.08

IV 11.99
1.00

143.85

0.08

12.97

19.02
3.00
40.18
0.47

18.67
3.00
38.74
0.48

16.28
3.00
29.46
0.55

15.94
3.00
28.24
0.56

14.89

24.67
5.00
24,35
1.01

24.14
5.00
23.30
1.04

20.36
5.00
16.59
1.23

19.82
5.00
15.72
1.26

16.77

30.19
7.00
18.60
1.62

29.47
7.00
17.72
1.66

24.37
7.00
12.13
2.01

23.64
7.00
11.41
2.07

19.51

38.30
10.00
14.67

2.61

37.30
10.00
13.91

2.68

30.29
10.00
9.17
3.30

29.28
10.00
8.57
3.42
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Subsystem

II

v

TABLE XIII

THE MEAN LIFE. STANDARD DEVIATION, a, AND 8 VALUES REQUIRED OF EACH COMPONENT

WITHIN A SUBSYSTEM ASSUMING AN IDENTICAL WEIBULL
FAILURE DISTRIBUTION FOR EACH SUBSYSTEM

E(Tgg) 11.16
SD(Tgg) 1.05

E(T,)=15.48
SD(T )~ 1.57

o ~11.98

8 ~ 3.00x10%

14.98

1.50
12.13
3.00 x 1014

12.64

1.19

12.94
3.00 x 1014
12.42
1.16
13.03

3.00 x 1014
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14.50
4.37

42.45
12.80
3.69
1.50X 10

38.48
11.56
3.71
1.10 X 10

22.41
6.75
3.70
1.45X10

21.13
6.34
3.71
1.20 X 10°

19.28
9.77

128.57
64.53
2.09
3.34 x 10%
108.43
54.50
2.09
2.30 X 10

~

41.61
20.88
2.09
3.16 X 10°

37.39
18.77
2.09

2.51X10°

25.99
18.19

420.22

301.22
1.41
5.88X10

297.41
201.88
1.50
6.00 X 10°

78.83
55.31
1.45
6.40 X 10

67.56
47.29
1.45

5.21x 102

40.00
40.00

2158.18
2171.16

0.99

2.06 X103

1480.00
1480.00
1.00
1.48 X 103

200. 00
200.00
1.00
2.00 % 102

160.00
160.00
1.00

1.60 X 10°




